翻訳と辞書 |
formal proof : ウィキペディア英語版 | formal proof A formal proof or derivation is a finite sequence of sentences (called well-formed formulas in the case of a formal language) each of which is an axiom, an assumption, or follows from the preceding sentences in the sequence by a rule of inference. The last sentence in the sequence is a theorem of a formal system. The notion of theorem is not in general effective, therefore there may be no method by which we can always find a proof of a given sentence or determine that none exists. The concept of natural deduction is a generalization of the concept of proof.〔The Cambridge Dictionary of Philosophy, ''deduction''〕 The theorem is a syntactic consequence of all the well-formed formulas preceding it in the proof. For a well-formed formula to qualify as part of a proof, it must be the result of applying a rule of the deductive apparatus of some formal system to the previous well-formed formulae in the proof sequence. Formal proofs often are constructed with the help of computers in interactive theorem proving. Significantly, these proofs can be checked automatically, also by computer. Checking formal proofs is usually simple, while the problem of ''finding'' proofs (automated theorem proving) is usually computationally intractable and/or only semi-decidable, depending upon the formal system in use. == Background ==
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「formal proof」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|